翻訳と辞書 |
Mnev's universality theorem : ウィキペディア英語版 | Mnev's universality theorem In algebraic geometry, Mnev's universality theorem is a result which can be used to represent algebraic (or semi algebraic) varieties as realizations of oriented matroids, a notion of combinatorics. ==Oriented matroids==
For the purposes of Mnev's universality, an oriented matroid of a finite subset is a list of all partitions of points in ''S'' induced by hyperplanes in . In particular, the structure of oriented matroid contains full information on the incidence relations in ''S'', inducing on ''S'' a matroid structure. The realization space of an oriented matroid is the space of all configurations of points inducing the same oriented matroid structure on ''S''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Mnev's universality theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|